报告题目:On the $Lp$-Minkowski problem with super-critical exponents.
报告人: 李奇睿(浙江大学)
报告地点: 腾讯会议641-724-244
报告摘要:The $Lp$-Minkowski problem deals with the existence of closed convex hypersurface with prescribed $p$-area measure. The problem has been solved in the sub-critical case $p>-n-1$, but remains widely open in the super-critical case $p<-n-1$. In this talk, we introduce new ideas to solve the problem for all super-critical exponents. A crucial ingredient in the proof is a topological method based on the calculation of the homology of a topological space of ellipsoids. The talk is based on recent joint work with Qiang Guang and Xu-Jia Wang.
个人简介:
浙江大学数学科学院研究员,博士生导师。研究方向包括几何分析与完全非线性方程等。近年来在Monge最优运输问题,预定曲率问题,几何流等方向取得系列研究成果,部分成果发表在Adv. Math.、Arch. Rational Mech. Anal. 、Calc. Var. Partial Differential Equations、Int. Math. Res. Not.、J. Eur. Math. Soc. (JEMS) 、J. Funct. Anal.、 J. Math. Pures Appl.、Trans. Amer. Math. Soc.等期刊上。