【75周年学术校庆统计与数学学院系列学术讲座】预告:李赛:Transfer learning in high-dimensional models
通讯员:  发布人:沈彤  发布时间:2023-05-19   浏览次数:10

报告题目Transfer learning in high-dimensional models

报告人李赛(中国人民大学)

报告时间20235241000-11:00

报告地点:腾讯会议:518-212-978

摘要:Transfer learning provides a powerful tool for incorporating multiple related studies into a target study of interest with successful applications in machine learning and biological research. In this talk, I will first introduce the similarity characterization of related tasks and transfer learning algorithms for high-dimensional linear regression. Its theoretical guarantees and minimax optimality will be demonstrated. Next, I will introduce a transferred Q-learning algorithm, which can integrate source data into a target offline or online reinforcement learning problem. Improvement in policy learning will be demonstrated theoretically and numerically. 

主讲人简介李赛,中国人民大学统计与大数据研究院准聘副教授,博士生导师。2018年于罗格斯新泽西州立大学获得统计博士学位,毕业后于宾夕法尼亚大学生物统计系和统计系进行博士后研究,目前的研究方向包括高维数据分析、迁移学习、因果推断的统计方法及理论和在遗传学、流行病学和机器学习中的应用。